High pressure n-decane and n-dodecane shock tube experiments were conducted to assist in the development of a Jet-A surrogate kinetic model. Jet A is a kerosene based jet fuel composed of hundreds of hydrocarbons consisting of paraffins, olefins, aromatics and naphthenes. In the formulation of the surrogate mixture, n-decane or n-dodecane represent the normal paraffin class of hydrocarbons present in aviation fuels like Jet A. The experimental work on both n-alkanes was performed in a heated high pressure single pulse shock tube. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Experimental data on both n-decane and n-dodecane oxidation and pyrolysis were obtained for temperatures from 867–1739 K, pressures from 19–74 atm, reaction times from 1.15–3.47 ms, and equivalence ratios from 0.46 to 2.05, and ∞. Both n-decane and n-dodecane oxidation showed that the fuel decays through thermally driven oxygen free decomposition at the conditions studied. This observation prompted an experimental and modeling study of n-decane and n-dodecane pyrolysis using a recently submitted revised n-decane/iso-octane/toluene surrogate model. The surrogate model was extended to n-dodecane in order to facilitate the study of the species and the 1-olefin species quantified during the pyrolysis of n-dodecane and n-decane were revised with additional reactions and reaction rate constants modified with rate constants taken from literature. When compared against a recently published generalized n-alkane model and the original and revised surrogate models, the revised (based on our experimental work) and extended surrogate model showed improvements in predicting 1-olefin species profiles from pyrolytic and oxidative n-decane and n-dodecane experiments. The revised and extended model when compared to the published generalized n-alkane and surrogate models also showed improvements in predicting species profiles from flow reactor n-decane oxidation experiments, but similarly predicted n-decane and n-dodecane ignition delay times.

K. Brezinsky: kenbrez@uic.edu